12 research outputs found

    Nonimmersive Virtual Reality Mirror Visual Feedback Therapy and Its Application for the Treatment of Complex Regional Pain Syndrome: An Open-Label Pilot Studyp me_819 622..629

    Get PDF
    Abstract Objective. Chronic pain conditions such as phantom limb pain and complex regional pain syndrome are difficult to treat, and traditional pharmacological treatment and invasive neural block are not always effective. Plasticity in the central nervous system occurs in these conditions and may be associated with pain. Mirror visual feedback therapy aims to restore normal cortical organization and is applied in the treatment of chronic pain conditions. However, not all patients benefit from this treatment. Virtual reality technology is increasingly attracting attention for medical application, including as an analgesic modality. An advanced mirror visual feedback system with virtual reality technology may have increased analgesic efficacy and benefit a wider patient population. In this preliminary work, we developed a virtual reality mirror visual feedback system and applied it to the treatment of complex regional pain syndrome. Design. A small open-label case series. Five patients with complex regional pain syndrome received virtual reality mirror visual feedback therapy once a week for five to eight sessions on an outpatient basis. Patients were monitored for continued medication use and pain intensity. Results. Four of the five patients showed >50% reduction in pain intensity. Two of these patients ended their visits to our pain clinic after five sessions. Conclusion. Our results indicate that virtual reality mirror visual feedback therapy is a promising alternative treatment for complex regional pain syndrome. Further studies are necessary before concluding that analgesia provided from virtual reality mirror visual feedback therapy is the result of reversing maladaptive changes in pain perception

    Tree of motility – A proposed history of motility systems in the tree of life

    Get PDF
    Motility often plays a decisive role in the survival of species. Five systems of motility have been studied in depth: those propelled by bacterial flagella, eukaryotic actin polymerization and the eukaryotic motor proteins myosin, kinesin and dynein. However, many organisms exhibit surprisingly diverse motilities, and advances in genomics, molecular biology and imaging have showed that those motilities have inherently independent mechanisms. This makes defining the breadth of motility nontrivial, because novel motilities may be driven by unknown mechanisms. Here, we classify the known motilities based on the unique classes of movement-producing protein architectures. Based on this criterion, the current total of independent motility systems stands at 18 types. In this perspective, we discuss these modes of motility relative to the latest phylogenetic Tree of Life and propose a history of motility. During the ~4 billion years since the emergence of life, motility arose in Bacteria with flagella and pili, and in Archaea with archaella. Newer modes of motility became possible in Eukarya with changes to the cell envelope. Presence or absence of a peptidoglycan layer, the acquisition of robust membrane dynamics, the enlargement of cells and environmental opportunities likely provided the context for the (co)evolution of novel types of motility
    corecore